The bovine leukemia virus encapsidation signal is composed of RNA secondary structures.
نویسندگان
چکیده
The encapsidation signal of bovine leukemia virus (BLV) was previously shown by deletion analysis to be discontinuous and to extend into the 5' end of the gag gene (L. Mansky et al., J. Virol. 69:3282-3289, 1995). The global minimum-energy optimal folding for the entire BLV RNA, including the previously mapped primary and secondary encapsidation signal regions, was analyzed. Two stable stem-loop structures (located just downstream of the gag start codon) were predicted within the primary signal region, and one stable stem-loop structure (in the gag gene) was predicted in the secondary signal region. Based on these predicted structures, we introduced a series of mutations into the primary and secondary encapsidation signals in order to explore the sequence and structural information contained within these regions. The replication efficiency and levels of cytoplasmic and virion RNA were analyzed for these mutants. Mutations that disrupted either or both of the predicted stem-loop structures of the primary signal reduced the replication efficiency by factors of 7 and 40, respectively; similar reductions in RNA encapsidation efficiency were observed. The mutant with both stem-loop structures disrupted had a phenotype similar to that of a mutant containing a deletion of the entire primary signal region. Mutations that disrupted the predicted stem-loop structure of the secondary signal led to similar reductions (factors of 4 to 6) in both the replication and RNA encapsidation efficiencies. The introduction of compensatory mutations into mutants from both the primary and secondary signal regions, which restored the predicted stem-loop structures, led to levels of replication and RNA encapsidation comparable to those of virus containing the wild-type encapsidation signal. Replacement of the BLV RNA region containing the primary and secondary encapsidation signals with a similar region from human T-cell leukemia virus (HTLV) type 1 or type 2 led to virus replication at three-quarters or one-fifth of the level of the parental virus, respectively. The results from both the compensatory mutants and BLV-HTLV chimeras indicate that the encapsidation sequences are recognized largely by their secondary or tertiary structures.
منابع مشابه
RNA sequences in the Moloney murine leukemia virus genome bound by the Gag precursor protein in the yeast three-hybrid system.
Encapsidation of the Moloney murine leukemia virus (MMLV) genome is mediated through a specific interaction between the major viral structural protein, Gag, and an RNA packaging signal, Psi. Many studies have investigated this process in vivo, although the specific examination of the Gag-RNA interaction in this context is difficult due to the variety of other viral functions involved in virion ...
متن کاملBinding of the human immunodeficiency virus type 1 Gag protein to the viral RNA encapsidation signal in the yeast three-hybrid system.
We have used the yeast three-hybrid system (D. J. SenGupta, B. Zhang, B. Kraemer, P. Pochart, S. Fields, and M. Wickens, Proc. Natl. Acad. Sci. USA 93:8496-8501, 1996) to study binding of the human immunodeficiency virus type 1 (HIV-1) Gag protein to the HIV-1 RNA encapsidation signal (HIVPsi). Interaction of these elements results in the activation of a reporter gene in the yeast Saccharomyces...
متن کاملSimian immunodeficiency virus RNA is efficiently encapsidated by human immunodeficiency virus type 1 particles.
Packaging of retroviral RNA is attained through the specific recognition of a cis-acting encapsidation site (located near the 5' end of the viral RNA) by components of the Gag precursor protein. Human immunodeficiency virus type 1 (HIV-1) and simian immunodeficiency virus (SIV) are two lentiviruses that lack apparent sequence similarity in their putative encapsidation regions. We used SIV vecto...
متن کاملSerological and genomic detection of bovine leukemia virus in human and cattle samples
Bovine leukemia virus (BLV) is a retrovirus responsible for lymphoproliferative disorders in cattle. Although infections of BLV in animals are well known, little is known about its capacity to infect humans. This study investigated the presence of anti-BLV antibodies and BLV proviruses in human and cattle samples. An indirect enzyme-linked immunosorbent assay (ELISA) was used to detect anti-BL...
متن کاملSerological and genomic detection of bovine leukemia virus in human and cattle samples
Bovine leukemia virus (BLV) is a retrovirus responsible for lymphoproliferative disorders in cattle. Although infections of BLV in animals are well known, little is known about its capacity to infect humans. This study investigated the presence of anti-BLV antibodies and BLV proviruses in human and cattle samples. An indirect enzyme-linked immunosorbent assay (ELISA) was used to detect anti-BL...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of virology
دوره 72 4 شماره
صفحات -
تاریخ انتشار 1998